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a b s t r a c t

Longitudinal and flexural wave propagation in a steel L-joint is considered in this paper.

Particular attention is paid to damage detection aspects. Experimental investigations

were conducted on an intact L-joint as well as on an L-joint with a notch. Velocity time

histories of elastic waves propagation have been applied to find the location of damage.

deformations, the special frame spectral element in the time domain, based on the

Mindlin–Herrmann rod and Timoshenko beam theories, was formulated. As a result this

paper discusses in detail the possibility of detection of damage in an L-joint and it

compares the usefulness of the application of axial and flexural waves in non-

destructive damage detection for this typical structural component.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Guided wave-based damage detection methods have been intensively developed over last years and have attracted
many researchers’ interest. The guided wave propagation technique utilizes an excitation of very high frequencies in the
form of an impulse or a wave packet. In the wave propagation approach, a structure can be perceived as a waveguide,
which directs the wave energy along its length. Guided ultrasonic waves are very attractive due to their ability of
inspecting large structures over long distances with a small number of transducers. This idea has been followed by many
research groups, and it is used with success in some practical applications [1,2]; especially for plates [3,4], pipes [4,5], rails
[6,7], or aircraft structures [8,9].

Modelling of wave propagation phenomena is possible in both time and frequency domains. One of frequency based
methods is the spectral finite element method (SFEM) developed by Doyle [10]. The SFEM has been widely extended by
Gopalakrishnan et al. [11] to anisotropic media. Numerical analysis of wave propagation by the SFEM in an isotropic
cracked rod, a Timoshenko beam and a plate can be found in Refs. [12–14]. A numerical study on wave propagation in a
rigid angle joint with three composite members is presented in Ref. [15]. To overcome drawbacks of the conventional
Fourier-based SFEM connected with the required assumption of periodicity, Mitra and Gopalakrishnan proposed the use of
the wavelet transform [16,17], instead of the Fourier transform. Igawa et al. [18] applied the Laplace transform to avoid the
problem of periodicity, which made an analysis of a frame of arbitrary geometry based on the Euler–Bernoulli theory
possible. Modelling of wave propagation can also be performed by the finite element method (FEM), e.g. [19]. The
advantage of this approach is the availability of numerous commercial FEM codes and its great ability to solve problems
ll rights reserved.
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involving complicated geometry [20]. However, the application of the FEM to wave propagation modelling requires very
fine mesh, i.e. it is recommended to use more than 20 nodes per wavelength [19]. A different approach is offered by the
time domain spectral element method (SEM) developed by Patera [21]. This method is an expansion of the FEM and it has
the same view-point as the p-version of the finite element method. The main idea of the SEM is the use of an interpolating
polynomial of high degree. In the SEM, Lagrange polynomials are applied at Gauss-Legendre-Lobbatto nodes [22]. The
spectral element method can also be based on Chebyshev polynomials as basis functions at Chebyshev–Gauss–Lobatto
points [23]. In the comparison with the FEM, the SEM brings two important benefits. First of all, when spectral elements
are used, the required number of nodes per wavelength is of order of 10 or less. In addition, in the SEM approach the
element matrices are integrated using the Gauss-Legendre-Lobbatto quadrature so that the local element mass matrix is
of diagonal structure, what enables efficient numerical temporal integration. Spectral elements in the time domain
are available for a rod based on the elementary theory [24], a Timoshenko beam [24], a membrane [25] and a plate [26]. An
analysis of wave propagation in three-dimensional (3D) truss structures is given in Ref. [27]. Recently, Peng et al. [28] have
presented interesting study on the application of the 3D spectral element method to wave propagation problems in plate
structures, discussing the aspect of damage detection.

Complications met in investigations of wave propagation in complex structural systems suggest careful studies of
simpler structural elements. Such the element is a joint of two straight rods, called an L-joint. The L-joint can also be a
component of more complex engineering structures or it can represent the simplest frame structure. The analysis of wave
propagation in an L-joint is of practical interest due to the mode conversion. An incident wave of one type, after reaching a
junction generates propagation and reflection of waves of other types, what causes damage detection more difficult than
for a simple rod. The earliest studies concerned analytical models of longitudinal as well as flexural wave propagation at a
junction of two non-collinear rods [29]. Lee and Kolsky [29] used the elementary rod theory to describe propagation of
longitudinal waves and the Timoshenko beam theory for flexural wave propagation. In experiments, a bent steel rod was
used. Strain gages were attached to the specimen and an incident pulse was created by firing a projectile, so that axial
impact was achieved. Atkins and Hunter [30] presented an analytical model of wave propagation in an L-type joint. In
performed experimental investigations a longitudinal pulse was induced by a projectile, whereas strains were measured by
strain gauges. Liang and Chen [31] studied theoretically reflection and transmission of longitudinal waves around a right-
angled joint of two rods. They concluded that when a horizontal rod of an L-joint was applied a force along its length, a
longitudinal wave through a welded joint nearly cannot transmit into a vertical rod. Beccu et al. [32] studied longitudinal
elastic waves in a bent bar. Experiments were performed on a bar with a sharp bend as well as with a smooth bend. Bars
were impacted axially by a cylindrical carbon steel piston accelerated by an air gun and strain gages were applied to
monitor strains. Numerical simulations of wave propagation in an L-joint using the SFEM were initiated by Doyle and Farris
[33]. They developed a spectrally formulated element for wave propagation in frame structures based on the elementary
rod theory and the Euler–Bernoulli beam theory. This model was examined on an L-joint consisting of two semi-infinite
members. To respect dispersion, modified rod theories were formulated in the frequency domain approach. Martin et al.
[34] formulated a frame element by combining the Mindlin–Herrmann rod with the Timoshenko beam in the frequency
domain. Numerical simulations have been conducted on two semi-infinite rods connected with a 451 joint. However, these
modified theories have not been compared with experimental results. Moreover, the above mentioned experimental and
numerical studies were performed for non-damaged L-joints only.

This paper is devoted to wave propagation in form of a wave packet in a steel L-type joint. Such the connection of two
rods can be found in many structural elements of civil and mechanical engineering, yet it is not well addressed in the
literature of structural health monitoring (SHM). The purpose of this study is to investigate numerically and
experimentally particular problems of longitudinal and flexural wave propagation for the L-joint structural element. To
model longitudinal as well as flexural wave propagation taking lateral deformations and shear deformations into
consideration, the special frame spectral element, based on the Mindlin–Herrmann rod and the Timoshenko beam theories
was formulated in the time domain. Particular attention was paid to damage detection in the L-joint. As a result, this paper
discusses in detail the possibility of detection of damage in the L-joint and compares the usefulness of axial and flexural
waves in non-destructive damage detection.
2. Formulation of spectral element method for a plane frame

2.1. Mindlin–Herrmann rod theory

The elementary wave theory for a thin rod (cf. [10]) assumes the presence of one-dimensional uniform axial stress only.
It also neglects the lateral contraction and the result of the governing wave equation is a non-dispersive signal. An
improvement of the elementary one-mode rod theory can be achieved by taking into consideration effects of the lateral
inertia. A rod deforms not only in longitudinal direction, but it also contracts due to the Poisson’s ratio effect. The Mindlin–
Herrmann theory [35] introduces the lateral contraction cðx; tÞ, which is assumed to be independent of the axial
deformation uðx; tÞ. Displacements in deep rod theory are approximated by:

uðx; yÞ � uðxÞ; vðx; yÞ �cðxÞy: (1)
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The governing equations for the Mindlin–Herrmann rod are:
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where f ðx; tÞ is the external force, t and x denote temporal and spatial variables, respectively. Material and geometrical
parameters: the modulus of elasticity, the shear modulus, the Poisson’s ratio, the mass density, the cross-section and the
moment of inertia are denoted by E, G, n, r, A, and I, respectively. The kinetic T and the strain energy U are formulated as
follows:
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Constants KM�H
1 and KM�H

2 are adjustable parameters to compensate for the approximation of displacement fields given by
Eq. (1). The choice of values of parameters KM�H

1 and KM�H
2 affects the value of the group velocity. Different rules to

establish parameters KM�H
1 and KM�H

2 are considered in Refs. [10] and [34]. Marin et al. [34] proposed to select KM�H
1 and

KM�H
2 based upon comparison with 2-D finite element results. In this study, in which experimental investigations are

reported, the parameters KM�H
1 ¼ 1:1 and KM�H

2 ¼ 2:1 are chosen to give the best fit to experimentally measured wave
velocity for the considered frequency range. An axial propagating wave in a rod was measured for the frequency 100 and
120 kHz, and the parameters KM�H

1 and KM�H
2 were determined by the method of least squares.

2.2. Timoshenko beam theory

The Timoshenko beam theory takes into account the effect of shear deformation. The displacement field is
approximated by two independent functions jðxÞ and vðxÞ:

uðx; tÞ ��yjðxÞ; vðx; tÞ � vðxÞ: (5)

The Timoshenko governing equations for flexural motion of a beam are formulated as [10]:
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The kinetic T and the strain energy U become:
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where vðx; tÞ is the vertical displacement, jðx; tÞ is the rotation, f ðx; tÞ is the external force, t and x denote temporal and
spatial variables, respectively. Material and geometrical parameters: the modulus of elasticity, the shear modulus, the
mass density, the cross-section and the moment of inertia are denoted by E, G, r, A and I, respectively. Constants KTim

1 and
KTim

2 are adjustable parameters. There are different rules to establish parameters KTim
1 and KTim

2 [10]. In this study the
parameter KTim

1 ¼ 0:95 is chosen to give the best fit to experimentally measured wave velocity for the considered frequency
range and KTim

2 is equal to 12KTim
1 =p2 to match the cut-off frequency with Lamb modes. A flexural propagating wave in a

rod was measured for the frequency 100 and 120 kHz, and the parameter KTim
1 was determined by the method of least

squares.

2.3. Spectral element formulation

The M-H-Tim frame element consists of the Mindlin–Herrmann rod (M–H) combined with the Timoshenko beam (Tim).
Strains in the frame element can be written as:
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Following classical steps, the weak formulation is obtained in the form:Z
L
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For standard C0 elements [36,37], interpolation of the displacement field qðx; tÞ in an element of length LðeÞ becomes:
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where tilde denotes the approximated quantity, n is the number of element nodes, Ni are interpolation polynomials of
order n�1, x 2 ½�1; þ1� is the parent domain and label ð:Þi denotes nodal values. Strains in the M-H-Tim element can be
interpolated through the relation:

~eðx; tÞ ¼ BðeÞðxÞqðeÞðtÞ; (16)

where the strain-displacement operator and the Jacobian are given by the following relations:
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Substitution of Eqs. (14) and (16) into (10) provides that following set of equations holds on the local element level:

MðeÞ €qðeÞ þKðeÞqðeÞ ¼ fðeÞ; (19)

where KðeÞ and MðeÞ are element matrices, fðeÞ denotes the vector of element applied forces. To evaluate element matrices, a
numerical integration is employed. Element matrices are integrated using the Gauss-Lobatto-Legendre (GLL) quadrature.
Therefore, formulae for the stiffness matrix, the mass matrix and the load vector become:

KðeÞ ¼
Xnp

p ¼ 1
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where np is the number of integration points, p 2 1;2; . . . ;np is the label of xp i.e. abscissa and wp are corresponding
weights. The coordinates of the Gauss-Lobatto-Legendre (GLL) integration points xp are obtained as the roots of the
equation [22]:

ð1�x2
Þ
dPnp�1ðxÞ

dx
¼ 0; (23)

where Pnp�1 denotes the Legendre polynomial of degree ðnp�1Þ and the associated weights wp of the points xp are:

wp ¼
2

npðnp�1ÞðPnp�1ðxpÞÞ
2
: (24)

In the GLL integration, the coordinates xp determine the location of finite element nodes, called GLL nodes. These are the
nodes for Lagrange polynomials Ni in the parent domain ½�1; þ1�. Due to the Gauss-Lobatto-Legendre rule, interpolation
carried out over the GLL nodes leads to the diagonal local mass matrix:

MðeÞ ¼

M1 0 � � � 0

0 M2 � � � 0

^ ^ & ^

0 0 � � � Mn

2
6664

3
7775; Mp ¼

rA 0 0 0

0 KM�H
2 rI 0 0

0 0 rA 0

0 0 0 KTim
2 rI

2
66664

3
77775wpjðxpÞ; (25)

according to the properties NiðxpÞ ¼ dip of shape functions and NiðxpÞNjðxpÞ ¼ dipdjp, i; j; p¼ 1;2; . . . ;np � n.
The above developed element is transformed to the global coordinate system. The transformation matrix enables

rotation of local axes to structural axes:
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The transformation of local element matrices to global matrices is given by:

KðeÞ ¼ TT
ðeÞKðeÞTðeÞ; MðeÞ ¼ TT

ðeÞMðeÞTðeÞ; f ðeÞ ¼ TT
ðeÞfðeÞ: (27)

Then the system of equations of motion is built in the course of standard aggregation of element matrices and vectors
referred to the structural coordinate system:

K¼ ANelement

e ¼ 1 KðeÞ; M¼ ANelement

e ¼ 1 MðeÞ; f ¼ ANelement

e ¼ 1 f ðeÞ: (28)

3. Experimental setup

Wave propagation experiments were performed on a steel L-type joint as well as on a steel rod (Fig. 1). The rod has
length L=1000 mm and cross-section 6 mm�6 mm. The L-joint was prepared through a welding process. It consists of two
rods of cross-section 6 mm�6 mm and length L=995 mm measured between axes, as shown in Fig. 1c. The rods were
chamfered at 451 and joined in the L-joint corner with a butt weld. Then the weld was ground to obtain the origin cross-
section (Fig. 1c, d). The experimentally determined mass density r is equal to 7556 kg/m3. The modulus of elasticity was
also determined experimentally in a force-displacement test (tensile test) using a strain gauge attached to the rod in the
longitudinal direction and a testing machine to register a force level, and its value equals E=200.11 GPa. The Poisson’s ratio
n was set at 0.33. The L-joint specimen is shown in Fig. 2a. It had free-free boundary conditions and there was no fixture,
which could affect wave propagation. Since excited waves had very low amplitudes, no rigid movement occurred. Four
specimens have been taken into investigations, namely the intact rod, the intact L-joint, the rod with a notch and the
L-joint with a notch. The rectangular notch with dimensions 2 mm in length and 1 mm in height was obtained by a
precision cut. The depth of the notch equals 16.7 percent of the rod height. The notch was introduced at the distance
Lr ¼ 0:5L from the left edge of the specimen (Fig. 1b, d).

The photo of the experimental setup is presented in Fig. 2a. To excite waves the piezoelectric (PZT) plate actuator Noliac
CMAP11 was applied. The actuator of dimensions 5 mm� 5 mm� 2 mm was bonded at one end of the specimen to excite
axial and flexural waves, as it is shown in Fig. 2b and c, respectively. The Tektronix function generator with the amplifier
creates an excitation signal. A propagating velocity signal was detected and registered on the opposite end of the specimen
by the scanning head PSV-I-400 of the Polytec Scanning Laser Vibrometer PSV-3D-400-M using the VD-07 velocity
decoder. As an excitation, a twelve-peak sinusoidal signal modulated by a Hanning window was chosen. The Hanning
window provided smoothed tone burst in order to reduce excitation of side frequencies [1]. The application of a 12-count
burst ensured relatively narrow spectrum what enabled reduction of the problem of dispersion. In both the rod and the
L-joint specimens, longitudinal as well as flexural waves were excited and measured. In the case of longitudinal waves, the
signal of frequency 120 kHz was excited, whereas in the case of flexural waves, the frequency of signal was 100 kHz. These
frequencies were found to be more effective in considered specimens and applied instrumentation.
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Fig. 1. Geometry of experimentally tested specimens: (a) ideal rod; (b) rod with the notch; (c) ideal L-joint; (d) L-joint with the notch.

Fig. 2. Experimental setup for wave propagation: (a) hardware and L-joint specimen; (b) detail showing actuator in the case of axial wave propagation;

(c) detail showing actuator in the case of flexural wave propagation.
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4. Simple tests of wave propagation in a straight rod

The aim of these simple tests was to experimentally validate the numerical model of wave propagation, applied later for
the L-type structure. Both longitudinal and flexural waves are considered. The placement of actuators and measurement
points are shown in Fig. 3. In the considered frequency range (100–120 kHz) only one longitudinal mode and one flexural
mode can propagate (Fig. 4). Modelling of longitudinal wave propagation was conducted by the spectral element method
based on the Mindlin–Herrmann rod theory, whereas modelling of flexural waves was conducted by the SEM based on the
Timoshenko beam theory. The choice of the Timoshenko model, even for such slender rod, is justified by particularly high
excitation frequencies applied in the study. Within the frequency range of interest (100–120 kHz) the group velocity
obtained by the Euler–Bernoulli beam theory differs considerably from the group velocity obtained by the Timoshenko
beam theory. Additionally, the Euler–Bernoulli theory does not show the presence of the second mode (Fig. 4). Similarly,
the application of the Mindlin–Herrmann rod model makes it possible to obtain more precise values of the group velocities
of a wave and to obtain the second mode above the cut-off frequency (Fig. 4).

The damping matrix was assumed as proportional with respect to the mass matrix CðeÞ ¼ ZMðeÞ, with the damping
parameter Z set at 1000 1/s for longitudinal waves and 2000 1/s for flexural waves. The proportional damping was
assumed after Ref. [24]. As it is suggested in Ref. [24], values of damping parameters were adopted to obtain the same
relationship between amplitudes of reflected signals for experimental investigations and numerical simulations. The
amplitude of the external force equals 1 N. In the case of flexural waves, a wave was impacted in 3rd node from the left
edge, what coincides with the actuator centre. The intact specimen was modelled using 24 equal elements with 15 GLL
nodes, while the specimen with the notch was modelled using 24 equal elements with 15 GLL nodes and one element with
15 GLL nodes of length 2 mm with height reduced by 1 mm. The h- and p-convergence analysis of results was carried out
and elements with 15 GLL nodes were chosen as a compromise between the spectral accuracy and the relatively large time
step. For the Mindlin–Herrmann as well as the Timoshenko theories, the mass matrix has the diagonal structure, therefore
the temporal integration using the central difference scheme can be efficiently conducted. The time step Dt must be
smaller than a critical value Dtcr ¼ 2=on, where the on is the largest frequency of an assembled finite element mesh with n

degrees of freedom. The time step was chosen as Dt¼ 10�7 s for the intact specimen and Dt¼ 10�8 s for the specimen with
the notch. This is so because for the specimen with defect the largest frequency of an assembled finite element mesh is
about ten times larger than for the intact specimen. In performed numerical simulations, time of temporal integration was
about 8 times smaller for the Gauss-Lobatto-Legendre quadrature (which leads to the diagonal mass matrix) than for the
Gauss quadrature.
Fig. 3. Location of actuator and velocity measurement points in the rod: (a) for longitudinal wave propagation; (b) for flexural wave propagation.

Fig. 4. Group velocity dispersion curves in the steel rod of cross-section 6 mm�6 mm for the elementary rod, Mindlin–Herrmann rod, Euler–Bernoulli

beam and Timoshenko beam theories.
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Fig. 5. Comparison between experimental and numerical velocity signals for the ideal rod in the case of longitudinal wave propagation: (a) velocity signal

v1(t) registered on the left end of the rod; (b) velocity signal v2(t) registered on the right end of the rod.

Fig. 6. Comparison between experimental and numerical velocity signals for the ideal rod in the case of flexural wave propagation: (a) velocity signal

v1(t) registered on the left end of the rod; (b) velocity signal v2(t) registered on the right end of the rod.

M. Rucka / Journal of Sound and Vibration 329 (2010) 1760–1779 1767
In Fig. 5 numerical results for longitudinal wave propagation in the ideal rod are compared with experimental data for
the elementary rod and Mindlin–Herrmann rod theories. Only signal envelopes are plotted for clarity. The velocity signal
v1ðtÞ was measured on the left end of the rod (Fig. 5a), while the signal v2ðtÞ was measured on its right end (Fig. 5b).
Amplitudes of experimental and numerical signals measured on the right end of the rod were normalized to 1. In the case
of experimental signal measured on the left end of the rod, the normalization was carried out to the first reflection, because
the signal v1ðtÞ was measured on the actuator, not directly on the specimen. Therefore a discrepancy between amplitudes
of the first pulse appears in Fig. 5a. If the elementary rod theory is used, experimental data are not compatible with
numerical ones. Experimental velocity signals are delayed with respect to numerical ones. This indicates the presence of
dispersion. Considering the Mindlin–Herrmann rod theory, it is noted that numerical simulations are in good agreement
with experimental data. In Fig. 6 numerical results for the flexural wave propagation are compared with experimental data.
It can be observed, that experimental signals are in good agreement with numerical simulations based on the Timoshenko
beam theory.

The comparison of experimental velocity signals for the intact specimen with the specimen with the notch is given in
Figs. 7 and 8 for longitudinal and flexural waves, respectively. For specimens with the notch, additional reflections appear
in the response signal and the position of damage in the rod can easily be identified from both v1ðtÞ and v2ðtÞ velocity
signals. However, the situation is different when damage does not occur in the middle of the rod. In the example with
longitudinal wave propagation, two positions of damage, namely Lr ¼ 0:25L and Lr ¼ 0:75L were considered (Fig. 9). It can
be seen, that only signal v1ðtÞ, registered at the same point as the actuator, makes an unambiguous localization of damage
possible (Fig. 9a, b). The velocity signal v2ðtÞ registered at the opposite end is the same for both Lr ¼ 0:25L and Lr ¼ 0:75L

damage positions (Fig. 9c).



ARTICLE IN PRESS

Fig. 7. Experimental velocity signals v1(t) and v2(t) measured on both ends of the rod in the case of longitudinal wave propagation: (a) ideal rod; (b) rod

with the notch.

Fig. 8. Experimental velocity signals v1(t) and v2(t) measured on both ends of the rod in the case of flexural wave propagation: (a) ideal rod; (b) rod with

the notch.
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5. Damage detection in the L-joint by guided waves

Experimental and numerical investigations were performed for the ideal L-joint as well as for the L-joint with the notch
(Fig. 1c, d). Two positions of the notch were considered, namely the notch on the horizontal member and on the vertical
member. A load in the form of a wave packet was induced in both axial and transverse directions. In numerical simulations
the M-H-Tim spectral frame element was applied. The L-type joints were modelled by the SEM in the same way as the
simple rods (as described in Section 4). The first non-zero frequency is 23.41 Hz for the intact L-joint and 23.39 Hz for the
L-joint with the notch. For the applied mesh the highest frequencies, which affect the critical time step Dtcr are 2.93 MHz
for the intact L-joint and 30.62 MHz for the L-joint with the notch.
5.1. Spectral element method model of the L-joint

The L-joint contains the butt weld in the corner. In this paper, it is proposed to model the welded part of a rod as a part
with reduced modulus of elasticity. To justify this assumption, a simple wave propagation test on a straight rod containing
a butt weld of length 4 mm was performed (Fig. 10a). The rod was cut in two parts, the edges of both pieces were
chamfered doubly in two directions (Fig. 10b) and the welding was performed. Then the weld was grinded in such a way,
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Fig. 9. Envelopes of numerical velocity signals v1(t) and v2(t) measured on both ends of the rod containing the notch at position Lr in the case of

longitudinal wave propagation: (a) notch at Lr ¼ 0:25L; (b) notch at Lr ¼ 0:75L; (c) notch at Lr ¼ 0:25L or Lr ¼ 0:75L.

Fig. 10. Straight rod with the weld analyzed to validate numerical weld model: (a) geometry; (b) detail of the weld; (c) the photo of the place of the weld;

(d) comparison between experimental and numerical velocity signals in the case of longitudinal wave propagation.
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that the rod obtained its origin cross-section (Fig. 10c). In numerical simulations, it was assumed, that the part of the rod
with the weld has degradated parameters because of heating during the welding process. After extended numerical
investigations, a 10 percent level of reduction of the material modulus of elasticity was chosen. This was confirmed by
experimental analysis. Therefore the SEM model of the rod has 4 mm element in the middle of the rod having the modulus
of elasticity E=180.10 GPa, i.e. 10 percent reduced compare with the remaining part of the rod. The measured velocity
signals v1ðtÞ and v2ðtÞ were compared with the numerical ones and displayed in Fig. 10d. It can be noted that the
experimental results agree with the numerical ones. The proposed weld model provided velocity results compatible with
experimentally measured signals.
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In the next step, the numerical model of the L-joint with the weld was prepared. Following the experiment with the
straight rod, it was assumed that two elements near the corner are with 10 percent reduced modulus of elasticity compare
with the remaining part of the L-joint. The length of each element was established as 2 cm, because the influence of the
welding process was observed on this length. Additionally, the numerical analysis of the isotropic L-joint was performed.
Fig. 11 shows comparison of the velocity signal v1ðtÞ registered in the node 1 (Fig. 12a) for the isotropic L-joint and for the
L-joint with the weld. Both spectral models (for the isotropic L-joint and for the L-joint with the weld) provide the same
results. This is because, the propagating waves reflect from the corner, and the reflection from the weld is masked by the
reflection from the L-joint corner. Therefore, in further simulations, the SEM model of the L-joint was assumed to be
isotropic, despite of the presence of the weld in its corner.

5.2. Longitudinal wave propagation in the L-joint

The wave packet of frequency 120 kHz was imposed in the longitudinal direction at the node 1, whereas the velocity
was measured in both nodes 1 and 2 (Fig. 12). At first the ideal frame was examined (Fig. 12a). Experimental and numerical
signals for this case are illustrated in Fig. 13. When the incident longitudinal wave reached the frame corner (node 3), both
longitudinal and flexural waves propagated and reflected. In the v1ðtÞ signal (Fig. 13a), the incident wave and eight
reflections are visible within the recorded 2 ms time period. The 1st, 2nd, 4th and 6th reflections were caused by
propagation of the longitudinal wave only, whereas the 3rd, 5th, 7th and 8th reflections contains both longitudinal and
flexural components. Similarly, in the v2ðtÞ velocity signal (Fig. 13b), the 1st, 2nd, 4th and 6th waveforms were created by
propagation of longitudinal waves, while the 3rd, 5th, 7th and 8th waveforms appeared from both longitudinal and flexural
waves. In Fig. 13 experimental and numerical signals in form of signal envelopes are shown and compared for the ideal
L-joint. It can be seen, that the application of the numerical model based on the M-H-Tim spectral frame element provides
experimental data compatible with numerical ones with respect to times of reflections.

The second example concerns the L-joint with the notch on the horizontal member (Fig. 12b). Numerical and
experimental results for this case are compared in Fig. 14. Reflections from the notch are visible in both v1ðtÞ and v2ðtÞ

numerical signals. Reflections from damage were identified based on the knowledge of the L-joint geometry and the group
Fig. 11. Numerical velocity signals for the isotropic L-joint and L-joint with the weld.

Fig. 12. Location of actuators and velocity measurements points for the L-joint in the case of longitudinal wave propagation: (a) ideal L-joint; (b) L-joint

with the notch at the horizontal member; (c) L-joint with the notch at the vertical member.
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velocity of axial and flexural waves. Two distinct reflections from the notch appeared in the v1ðtÞ signal (Fig. 14a), namely
at the time instant equal to 0.2 and 0.6 ms. These both reflections were caused by propagation of longitudinal waves. In the
v2ðtÞ signal (Fig. 14b) two reflections from the notch can also be observed. The first reflection occurred in 0.6 ms as a result
of propagation of the longitudinal wave. The second reflection was caused by propagation of both longitudinal and flexural
waves and it occurred at the time instance equal to 0.73 ms (the longitudinal wave from the node 1 to the node 3, next the
flexural wave from the node 3 to the notch and back, finally the longitudinal wave from the node 3 to the node 2). Next
reflections from the notch overlaped with reflections from the L-joint corner and from the L-joint ends, therefore they
cannot be easily identified. In experimentally measured signals, reflections from the notch can also be observed in Fig. 14.
Reflections contained in the v1ðtÞ signal are very distinct; however reflections from the notch in the v2ðtÞ experimental
signal are more contaminated.

In the third example, the notch on the vertical member of the L-joint is considered (Fig. 12c) and results for this case are
presented in Fig. 15. In the v1ðtÞ numerical signal (Fig. 15a) the reflection from the notch caused by longitudinal wave
Fig. 13. Comparison between experimental and numerical velocity time signals for the ideal L-joint in the case of longitudinal wave propagation: (a)

velocity signal v1(t) registered on the left end of the L-joint; (b) velocity signal v2(t) registered on the right end of the L-joint.
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propagation occurring in the time instance t=0.6 ms have very small amplitude and its usefulness in damage detection is
limited because the experimental measurement of such small waveform appeared to be impossible. The second reflection
from the notch in the v1ðtÞ occurred at 0.73 ms and it was caused by propagation of longitudinal and flexural waves (the
longitudinal wave from the node 1 to the corner, than flexural to the notch and back, and finally the longitudinal wave
from the corner to the node 1). This component can be used for damage detection purpose and it was successfully recorded
in the performed experiment. The numerical velocity signal v2ðtÞ (Fig. 15b) is identical as in the case of the notch on the
horizontal element. Hence it is impossible to indicate the precise localization of damage (i.e. if it is on the vertical or on the
horizontal element) based on the information from the v2ðtÞ only for considered position of damage.

The last example concerns the numerical simulations for various damage positions Lr , namely Lr ¼ 0:25L, Lr ¼ 0:5L and
Lr ¼ 0:75L (cf. Fig. 12b and c). As in the case of the simple rod, the measurement of the velocity signal v2ðtÞ cannot provide
unambiguous identification of damage position. If damage is situated on the horizontal member of the L-joint (i.e. on the
Fig. 14. Comparison between experimental and numerical velocity time signals for the L-joint with the notch at the horizontal member in the case of

longitudinal wave propagation: (a) velocity signal v1(t) registered on the left end of the L-joint; (b) velocity signal v2(t) registered on the right end of the

L-joint.
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member, on which the actuator is bonded), the velocity signal v1ðtÞ enables easy localization of the notch position
(Fig. 16a). However, when damage is placed on the vertical member, the reflection from damage is masked partially by the
reflection from the node 2. As shown in Fig. 16b, the localization of the notch is possible for all considered positions
(Lr ¼ 0:25L, Lr ¼ 0:5L, Lr ¼ 0:75L), however damage placed in the neighbourhood of Lr ¼ 0:6L to Lr ¼ 0:7L will be completely
masked by the reflection from the node 2. This is caused by different values of group velocities of the longitudinal wave
(5039 m/s) and the flexural wave (3021 m/s). If the group velocity of the longitudinal wave was equalled to the group
velocity of the flexural wave (here for the frequency 303 kHz), this ambiguous situation could be eliminated. However, for
the equal group velocities of the longitudinal and flexural waves, the second flexural mode appears which makes the
damage detection more difficult.
Fig. 15. Comparison between experimental and numerical velocity time signals for the L-joint with the notch at the vertical member in the case of

longitudinal wave propagation: (a) velocity signal v1(t) registered on the left end of the L-joint; (b) velocity signal v2(t) registered on the right end of the

L-joint.
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Fig. 16. Envelopes of numerical velocity signals v1(t) measured on the left end of the L-joint containing the notch for different positions Lr (Lr ¼ 0:25L,

Lr ¼ 0:5L, Lr ¼ 0:75L) in the case of longitudinal wave propagation: (a) L-joint with the notch at the horizontal member; (b) L-joint with the notch at the

vertical member.

Fig. 17. Location of actuators and velocity measurements points for the L-joint in the case of flexural wave propagation: (a) ideal L-joint; (b) L-joint with

the notch at the horizontal member; (c) L-joint with the notch at the vertical member.
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5.3. Flexural wave propagation in the L-joint

The incident wave packet of frequency 100 kHz was imposed in the transverse direction, while the velocity was
measured in both nodes 1 and 2, as it is shown in Fig. 17. At the beginning, the ideal L-joint was investigated (Fig. 17a).
When the incident flexural wave reached the frame corner, both flexural and longitudinal waves appeared. The group
velocity of the axial wave is equal to 5075 m/s, while the group velocity of the flexural wave is 2950 m/s. Results of
numerical simulations and experiments are given in Fig. 18. In the v1ðtÞ signal (Fig. 18a), the incident wave and six echoes
were visible during recorded 2 ms time period. The 1st and 3rd reflections were caused by propagation of the flexural
wave, whereas the 2nd, 4th, 5th and 6th reflections contained both flexural and longitudinal components. The comparison
of numerical and experimental signals in the form of signal envelopes for the ideal L-joint is illustrated in Fig. 18. Note that
the application of the numerical model based on the M-H-Tim spectral frame element results in compatibility of time of
reflections.
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Fig. 18. Comparison between experimental and numerical velocity time signals for the ideal L-joint in the case of flexural wave propagation: (a) velocity

signal v1(t) registered on the left end of the L-joint; (b) velocity signal v2(t) registered on the right end of the L-joint.
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Next, the L-joint with the notch was tested. The numerically obtained v2ðtÞ velocity signal for the L-joint with the notch
on the horizontal member (Fig. 19b) is identical as for the L-joint with the notch on the vertical member (Fig. 20b).
The reflection from damage occurred at 0.86 ms. Experimental signals v2ðtÞ are also very similar for the notch situated on
the horizontal and the vertical member. The signal v1ðtÞ differs depending on the notch position (on the horizontal or
on the vertical member). In the case of damage placed on the horizontal member, the reflection occurs at 0.33 ms, what
was successfully registered in experimental measurements (Fig. 19a). For damage situated on the vertical element, the
v1ðtÞ signal (Fig. 20a) contained the reflection from damage at 0.86 ms (the flexural wave from the node 1 to the corner,
then the longitudinal wave to the notch and back, and finally flexural wave to the node 1).

In the last example, numerical simulations for three various damage positions Lr ¼ 0:25L, Lr ¼ 0:5L and Lr ¼ 0:75L are
investigated (cf. Fig. 17b and c). Damage situated on the horizontal member can easily be identified from the v1ðtÞ signal
(Fig. 21a) by propagation of the flexural wave. For the notch situated on the vertical element, identification is also
unambiguous for arbitrary damage position (Fig. 21b) until the group velocity of the longitudinal wave is larger than the
group velocity of the flexural wave.
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Fig. 19. Comparison between experimental and numerical velocity time signals for the L-joint with the notch at the horizontal member in the case of

flexural wave propagation: (a) velocity signal v1(t) registered on the left end of the L-joint; (b) velocity signal v2(t) registered on right the end of the

L-joint.
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6. Conclusions

In this paper longitudinal and flexural wave propagation in the L-type joint was investigated both experimentally and
numerically. In particular the detection of damage was considered by analyzing wave speeds and reflection times in
recorded velocity signals.

Numerical simulations were performed by the spectral element method in the time domain using the M-H-Tim frame
element based on the Mindlin–Herrmann rod combined with the Timoshenko beam. Application of the M-H-Tim element
guarantees that the mass matrix has diagonal structure; therefore the temporal integration can be efficiently performed by
the central difference scheme. The effectiveness of the proposed element was experimentally confirmed. The model based
on the Mindlin–Herrmann rod theory guarantees better approximation for the first longitudinal mode behaviour than the
elementary theory, what was proved by the comparison with experimentally measured signals. Therefore, a numerical
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Fig. 20. Comparison between experimental and numerical velocity time signals for the L-joint with the notch at the vertical member in the case of

flexural wave propagation: (a) velocity signal v1(t) registered on the left end of the L-joint; (b) velocity signal v2(t) registered on the right end of the

L-joint.
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model of an arbitrary joint intended as a part of the SHM system should be described in the SEM formulation based on the
Mindlin–Herrmann and the Timoshenko theories to obtain proper times of reflections from potential damage.

Experimental and numerical investigations of damage detection were performed for the L-joint with a reference to the
simple rod. In the performed experiments, the velocity signal was measured at two opposite ends of the specimen (at the
‘start point’, on which the actuator is bonded and at the ‘end point’). The frequency of the applied incident wave was
selected to ensure propagation one axial and one flexural mode. Damage detection in the rod is possible using longitudinal
as well as flexural waves and it is unambiguous, when the velocity signal is measured at the start point. Localization of
damage in the L-joint is more difficult to detect due to the mode conversion. As in the case of the simple rod, the
measurement of the wave propagation signal at the end point cannot provide unambiguous identification of damage
position. For longitudinal as well as for flexural incident waves, damage situated on the horizontal member (containing the
excitation point) can easily be identified by the velocity measurement in the start point. When damage is situated on the
vertical element (after passing of the wave through the corner), the signal registered in the start point not always can
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Fig. 21. Envelopes of numerical velocity signals v1(t) measured on the left end of the L-joint containing the notch for different positions Lr (Lr ¼ 0:25L,

Lr ¼ 0:5L, Lr ¼ 0:75L) in the case of flexural wave propagation: (a) L-joint with the notch at the horizontal member; (b) L-joint with the notch at the

vertical member.
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provide its precise localization. For the longitudinal incident wave, there is a region, in which reflection originating from
damage is masked by the reflection from the L-joint ends. The location of this region depends on group velocities of axial
and flexural waves. In the case of the flexural incident wave, identification of the notch is unambiguous for arbitrary
damage position until the group velocity of the longitudinal wave is larger than the group velocity of the flexural wave.
Results of the research on the effectiveness of the guided wave-base damage detection technique lead to the conclusion,
that the SHM system designed for the L-joint structure can be equipped with only one actuator and one measurement
point (in the same place as the actuator) since the detection of damage using the flexural incident wave is possible for an
arbitrary damage position.
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